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Abstract. This continuation of the derivation of general beam-referenced stage-two spin-correlation func-
tions is for the analysis of top–antitop pair-production at the Tevatron and at the Large Hadron Collider.
Both the gluon-production and the quark-production contributions are included for the charged-lepton-

plus-jets reaction pp or pp̄→ tt̄→ (W+b)(W−b̄)→ (l+νb)(W−b̄). There is a simple 4-angle beam-referenced
spin-correlation function for determination of the relative sign of or for measurement of a possible non-trivial
phase between the two dominant λb =−1/2 helicity amplitudes for the t→W

+b decay mode. There is an

analogous function and tests for t̄→W−b̄ decay. This signature requires use of the (tt̄ )c.m. energy of the
hadronically decaying W -boson, or the kinematically equivalent cosine of the polar angle of W∓ emission
in the antitop (top) decay frame. Spinors and their outer-products are constructed so that the helicity-
amplitude phase convention of Jacob and Wick can be used throughout for the fixing of the signs associated
with this largeW -boson longitudinal–transverse interference effect.

1 Introduction:W -boson
longitudinal–transverse interference

This continuation of a previous paper [1] on the deriva-
tion of general beam-referenced stage-two spin-correlation
functions is for the analysis of top–antitop pair produc-
tion [2, 3] at the Tevatron and at the Large Hadron Col-
lider [4]. Each second at the Large Hadron Collider there
will be a top–antitop pair produced when the planned
L ∼ 1033 cm−2s−1 is reached. This should provide an al-
most ideal “laboratory” for both investigating top-quark
physics itself, and for simultaneously improved empirical
mastery of reaction backgrounds and detector systemat-
ics/performance.
As in the previous paper, which we denote as “I”, the

helicity formalism [5] is used for a simple and transpar-
ent treatment of all relative phase effects. We use this
formalism for investigating the large effects of W -boson
longitudinal–transverse interference in top–antitop pair-
production for the charged-lepton plus jets channel, the
di-lepton plus jets channel, and the all-jets channel. In “I”,
only the quark-production contribution was included; it is
the dominant contribution at the Tevatron. On the other
hand at the Large Hadron Collider, the gluon-production
contribution dominates. To leading order in αs, both con-
tributions are included in the analysis in the present paper.
The modular property of the helicity-formalism with re-
spect to incorporation of the various density matrices
and symmetries again remains manifest throughout this
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analysis. This modularity should be easy to exploit in
understanding and checking large interference effects in
applications of these results.
Using the spinor outer-product formulas obtained in

AppendixA, the associated gluon production density-
matrix elements are derived in Appendix B in the helicity-
amplitude phase convention of Jacob and Wick (JW). The
analogous quark-production density-matrix elements were
obtained in “I”. They also follow from these spinor outer-
products. Besides their dependence on cosΘB, these gluon
and quark density-matrix elements ρ

λ1λ2,λ
′
1λ
′
2
(ΘB, ΦB)

exhibit several non-trivial overall minus signs and an
explicit dependence on the azimuthal angle ΦB. These
important spherical angles ΘB and ΦB are defined in
Figs. 1 and 2. Otherwise, to avoid repetition, we as-
sume that the reader has “I” available with its figures,
discussions, and the sequential-decay density matrices
R
λ1λ

′
1
(t→W+b→ (l+ν)b) andR

λ2λ
′
2
(t̄→W−b̄→ (l−ν̄)b̄)

for the CP -conjugate process. For the sequential-decay
with the first-stage t→W+b followed by the second-stage
W+→ l+ν, the spherical angles θa, φa specify the l+ mo-
mentum in the W1

+ rest frame when there is first a boost
from the (tt̄)c.m. frame to the t1 rest frame, and then a sec-
ond boost from the t1 rest frame to the W1

+ rest frame
(see “I”). The 0◦ direction for the azimuthal angle φa is
defined by the projection of the W2

− momentum direc-
tion. Analogously, the spherical angles θb, φb specify the l

−

momentum in theW2
− rest frame.

As in “I”, the emphasis is on tests for the charged-
lepton-plus-jets reaction pp or pp̄→ tt̄→ (W+b)(W−b̄)→



386 C.A. Nelson et al.: Use of W -boson longitudinal–transverse interference in top quark spin-correlation functions: II

(l+νb)(W−b̄). However, in contrast with the analysis in
“I”, because of the differences in dependence on cosΘB
among the five sets of gluon-production density-matrix
elements, for clarity cosΘB is not integrated out in the
present paper. Consequently, versus the 3-angle stage-
two spin-correlation function F|0+F|sig in “I” which only
included the quark-production contribution, there is in-
stead a simple 4-angle beam-referenced stage-two spin-
correlation function G(g,q)|0+G(g,q)|sig with both gluon
(see (2) and (3)) and quark (see (9) and (10)) production
contributions.
This BR-S2SC function can be used for the determin-

ation of the relative sign of or for measurement of a possible
non-trivial phase between the two dominant λb =−1/2 he-
licity amplitudes for the t→W+b decay mode. Both in the
SM and in the case of an additional large tR→ bL chiral
weak-transition moment [6], the λb =−1/2 and λb = 1/2
amplitudes are more than ∼ 30 times larger than the λb =
1/2 and λb =−1/2 amplitudes. For theCP -conjugate case,
there are analogous tests for t̄→W−b̄ decay based on the
analogous function; see (21) and (22), and (24) and (25).
As in “I”, this important signature from W -boson

longitudinal–transverse interference requires use of the
(tt̄ )c.m. energy of the hadronically decaying W -boson, or
the kinematically equivalent cosine of the polar angle of
W∓ emission in the antitop (top) decay frame, cos θt2,1.
In application, for instance to pp→ tt̄X, parton-level top-
quark spin-correlation functions [7, 8] need to be smeared
with the appropriate parton distribution functions with
integrations over cosΘB and the (tt̄ )c.m. energy,

√
s.

The color factors have been included in these BR-S2SC
functions.
For the gluon-production-decay sequence

g1g2→ t1t2→ (W
+b)(W−b)→ · · · , (1)

we assume that the λb = −1/2 and λb = 1/2 amplitudes
dominate in t1 and t̄2 decay. The simple four-angle dis-
tribution Gg|0+Gg|sig for t1→W

+
1 b→ (l

+ν)b involves the
angles {ΘB; θt2, θa, φa}, where ΘB is shown in Fig. 1. The
other angles are displayed in Figs. 1 and 3 of “I” The “gluon
contribution” is

Gg|0 =
16π3

3
c(s,ΘB) g̃

g
1(s,ΘB)

×

{

1

2
Γ (0, 0) sin2 θa+Γ (−1,−1) sin

4 θa

2

}

× [Γ (0, 0)+Γ (1, 1)], (2)

Gg|sig =−
4
√
2π4

3
c(s,ΘB) g̃

g
2(s,ΘB) cos θ

t
2 sin θa sin

2 θa

2
×{ΓR(0,−1) cosφa−ΓI(0,−1) sinφa}

× [Γ (0, 0)+Γ (1, 1)]R, (3)

with two gluon-beam-referencing factors

Fig. 1. The derivation of the general “beam referenced stage-
two-spin-correlation” function begins in the “home” or starting
coordinate system (xh, yh, zh) in the (tt̄ )c.m. frame. The top
quark t1 is moving in the positive zh direction, and θ1, φ1 spec-
ify the W1

+ momentum direction. The g1 gluon-momentum
or q1 quark-momentum “beam” direction is specified by the
spherical angles ΘB, ΦB. Note that ΦR = ΦB−φ1

g̃g1(s,ΘB) = sin
2ΘB(1+cos

2ΘB)

+
8m2

s
(cos2ΘB+sin

4ΘB)

−
16m4

s2
(1+sin4ΘB), (4)

g̃g2(s,ΘB) = sin
2ΘB(1+cos

2ΘB)

−
8m2

s
(1+sin2ΘB)

+
16m4

s2
(1+sin4ΘB). (5)

The tildes denote the fact that these two factors first ap-
pear in the slightly more general five-angle BR-S2SC func-
tions in Sect. 2 in which the (tt̄ )c.m. energy of the lepton-
ically decaying W+ has not been integrated out, i.e. in
which the cos θ1

t dependence has not been integrated out.
The overall pole factor

c(s,ΘB) =
s2g4

96(m2− t)2(m2−u)2

[

7+
36p2

s
cos2ΘB

]

(6)

depends on the (tt̄ )c.m. center-of-momentum energy
√
s

and cosΘB, and includes the gluon color factor. The “sig-
nal” contribution is suppressed by

R≡
[Γ (0, 0)−Γ(1, 1)]

[Γ (0, 0)+Γ(1, 1)]
(7)

which is associated with the stage-one part of the sequen-
tial decay t̄→W−b̄. There is similarly a suppression factor
R, see (23), for the CP -conjugate channel t2→W

−
2 b→
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Fig. 2. Supplement to previous figure to show θ2, φ2 which
specify theW2

− momentum direction. The azimuthal angles φ1
and φ2 are Lorentz invariant under boosts along the zh axis.
Note that the sum φ= φ1+φ2 is the angle between the t1 and
t̄2 decay planes, and that the t̄2 momentum is in the negative zh
direction. The three angles θt1, θ

t
2 and φ describe the first stage

in the sequential-decays of the tt̄ system in which t1→W1
+b

and t̄2→W2
−b̄. The angles θt1, θ

t
2 are defined respectively in

the t1, t̄2 rest frames [1]

(l−ν̄)b. Numerically, R=R=
(

1−
2m2W

mt2

)/(

1+
2m2W

mt2

)

∼

0.41 in both the standard model and in the case of an addi-
tional large tR→ bL chiral weak-transition moment.
For g1(q)g2(r) −→ t1(p)t2(l), in terms of the particles’

external momenta, useful kinematic formulas are s= (q+
r)2 = (p+ l)2 = 4E2, t= (p−q)2 = (r− l)2 =m2−2E2(1−
β cosΘB), and u = (p− r)2 = (q− l)2 = m2− 2E2(1 +
β cosΘB) where β = p/E, γ = E/m with m,E, p the top-
quark mass, energy, and magnitude of 3-momentum in the
(tt̄ )c.m. frame.
For the quark-production-decay sequence

q1q2→ t1t2→ (W
+b)(W−b)→ · · · , (8)

we also assume that the λb = −1/2 and λb = 1/2 ampli-
tudes dominate in t1 and t̄2 decay. Including the color
factor, the four-angle distribution Gq|0+Gq|sig for t1 →
W+1 b→ (l

+ν)b or “quark contribution” is

Gq|0 =
2π3g4

27s2
g̃q1(s,ΘB)

×

{

1

2
Γ (0, 0) sin2 θa+Γ (−1,−1) sin

4 θa

2

}

× [Γ (0, 0)+Γ(1, 1)], (9)

Gq|sig =−

√
2π4g4

54s2
g̃q2(s,ΘB) cos θ

t
2 sin θa sin

2 θa

2
×{ΓR(0,−1) cosφa−ΓI(0,−1) sinφa}

× [Γ (0, 0)+Γ (1, 1)]R, (10)

with two quark-beam-referencing factors

g̃q1(s,ΘB) = 1+cos
2ΘB+

4m2

s
sin2ΘB, (11)

g̃q2(s,ΘB) = 1+cos
2ΘB−

4m2

s
sin2ΘB. (12)

In terms of the t→W+b helicity amplitudesA(λW+ , λb) in
the t1 rest frame, the decay density matrix element

〈θt1, φ1, λW+ , λb|
1

2
, λ1〉=D

(1/2)∗
λ1,µ

(φ1, θ
t
1, 0)A (λW+ , λb) ,

A(λW+ , λb)≡ |A(λW+ , λb)| exp(i ϕλW+ ,λb),

(13)

where µ= λW+ −λb in terms of the W1
+ and b-quark he-

licities. The dominant polarized-partial widths are

Γ (0, 0)≡ |A(0,−1/2)|2 , Γ (−1,−1)≡ |A(−1,−1/2)|2

(14)

and theW -boson-LT-interference widths are

ΓR(0,−1) = ΓR(−1, 0)≡Re[A(0,−1/2)A(−1,−1/2)
∗]

≡ |A(0,−1/2)||A(−1,−1/2)| cosβL, (15)

ΓI (0,−1) =−ΓI (−1, 0)≡ Im[A(0,−1/2)A(−1,−1/2)
∗]

≡−|A(0,−1/2)||A(−1,−1/2)| sinβL, (16)

where βL ≡ ϕ−1,− 12
−ϕ0,−12

.

For theCP -conjugate process, t̄2→W2
−b̄, in the t̄2 rest

frame, the helicity amplitudes B (λW− , λb̄) are defined by

〈θt2, φ2, λW− , λb̄|
1

2
, λ2〉=D

(1/2)∗
λ2,µ̄

(φ2, θ
t
2, 0)B (λW− , λb̄) ,

B(λW− , λb)≡ |B(λW− , λb)| exp(i ϕλW− ,λb
),

(17)

with µ̄= λW− −λb̄, and

Γ (0, 0)≡ |B(0, 1/2)|2 , Γ (1, 1)≡ |B(1, 1/2)|2 ,
(18)

ΓR(0, 1) = ΓR(1, 0)≡Re[B(0, 1/2)B(1, 1/2)
∗]

≡ |B(0, 1/2)||B(1, 1/2)| cosβR, (19)

Γ I(0, 1) =−Γ I(1, 0)≡ Im[B(0, 1/2)B(1, 1/2)
∗]

≡−|B(0, 1/2)||B(1, 1/2)| sinβR, (20)

where βR ≡ ϕ1, 12
−ϕ0, 12

.

For the CP -conjugate channel t2→W
−
2 b→ (l

−ν̄)b, the

analogous four-angle BR-S2SC function Gg|0+G
g|sig is a

distribution versus {ΘB; θt1, θb, φb}, where the latter three
angles are displayed in Figs. 2 and 3 of “I”. The gluon con-
tribution is

Gg|0 =
16π3

3
c(s,ΘB) g̃

g
1(s,ΘB)

×

{

1

2
Γ (0, 0) sin2 θb+Γ (1, 1) sin

4 θb

2

}

× [Γ (0, 0)+Γ (−1,−1)], (21)
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Fig. 3. For a derivation of the alternative Θt, Φt beam-
referenced production density-matrix elements, a supplement
to Fig. 1 to show the Θt and Φt angles in the beam coordi-
nate system (xb, yb, zb) in the (tt̄ )c.m. frame. The g1 gluon-
momentum or q1 quark-momentum “beam” direction is in the
positive zb direction. The final t1 momentum is specified by
the spherical angles Θt, Φt, with the t̄2 momentum, not shown,
back to back with the t1

Gg|sig =−
4
√
2π4

3
c(s,ΘB) g̃

g
2(s,ΘB) cos θ

t
1 sin θb sin

2 θb

2
×
{

ΓR(0, 1) cosφb+Γ I(0, 1) sinφb
}

× [Γ (0, 0)+Γ (−1,−1)]R, (22)

where

R≡
[Γ (0, 0)−Γ (−1,−1)]

[Γ (0, 0)+Γ (−1,−1)]
. (23)

The quark contribution is

Gq|0 =
2π3g4

27s2
g̃q1(s,ΘB)

×

{

1

2
Γ (0, 0) sin2 θb+Γ (1, 1) sin

4 θb

2

}

× [Γ (0, 0)+Γ (−1,−1)], (24)

Gq|sig =−

√
2π4g4

54s2
g̃q2(s,ΘB) cos θ

t
1 sin θb sin

2 θb

2
×
{

ΓR(0, 1) cosφb+Γ I(0, 1) sinφb
}

× [Γ (0, 0)+Γ (−1,−1)]R. (25)

1.1 Structure of four-angle BR-S2SC functions

In general, the t1t2 → (W+b)(W−b) → (l+νb)(W−b)
decay-structure of the above four-angle BR-S2SC func-
tions is exactly analogous to that of the quark-production
three-angle non-beam-referenced S2SC functions in “I”.

The significant difference is the additional dependence on
cosΘB due to the beam-referencing. Therefore, for gluon-
production there are the two gluon-beam-referencing fac-
tors g̃g1(s,ΘB), g̃

g
2(s,ΘB) of (4) and (5), and for quark-

production the two quark-beam-referencing factors
g̃q1(s,ΘB), g̃

q
2(s,ΘB) of (11) and (12). There is a com-

mon final-state interference structure in these BR-S2SC
functions for the charged-lepton plus jets reaction pp or
pp̄→ tt̄→ . . . The final-state relative phase effects do not
depend on whether the final t1t2 system has been produced
by gluon or by quark production.
In these four-angle expressions, the signal contribu-

tions are again suppressed by the factorR= (probWL)−
(probWT) as a consequence of the dynamical assumption
that the λb = −1/2 and λb = 1/2 amplitudes dominate.
From the θ2

t dependence of the integrated diagonal elem-

ents of the sequential-decay density matrices R
bR
++, R

bR
−−

for t̄2→W2
−b̄→ (l−ν̄)b̄, R

bR
++ and R

bR
−− [see (95) and (96)

of “I”], it follows that R’s numerator appears in Gg,q|sig
multiplied by cos θt2 and that R’s denominator appears in
Gg,q|0 multiplied by one. The off-diagonal Rλ2λ

′
2
elements

which describe t̄2-helicity interference do not contribute
due to the integration over the opening angle φ between
the t1 and t̄2 decay planes. There are the analogous struc-
tures in the four-angle Gg,q|0+G

g,q|sig functions for the
CP -conjugate tests.

1.2 Outline of this paper

For the production-decay sequence g1g2→ t1t2→ (W+b)
(W−b)→ · · ·, Sect. 2 of this paper contains the derivation
in the (tt̄ )c.m. frame of the gluon-production BR-S2SC
functions in the “home” or starting coordinate system
(xh, yh, zh), which is defined by Figs. 1 and 2 with the
top-quark t1 is moving along the positive zh direction.
Section 2.1 lists the gluon-production t1t2 density-matrix
elements in this coordinate system with the g1 gluon-
momentum “beam” direction specified by the spherical
angles ΘB, ΦB. In Sect. 2.2, the gluon contributions to the
general BR-S2SC functions Ig

λ1λ2;λ
′
1λ
′
2

are obtained, and

in Sect. 2.3 applied to the lepton-plus-jets channel of the
tt̄ system, assuming that the λb =−1/2 and λb̄ = 1/2 am-
plitudes dominate. The above four-angle gluon-production
BR-S2SC function Gg|0+Gg|sig is obtained, along with
addition-angle generalizations which might be useful em-
pirically. Analogously, in Sect. 3, the quark-production t1t2
density-matrix elements for Figs. 1 and 2 are listed with
q1 quark-momentum “beam” direction specified by the
spherical angles ΘB, ΦB. The analogous BR-S2SC func-
tions are obtained for the case of quark production q1q2→
t1t2 → (W+b)(W−b)→ · · ·. Section 4 contains a sum-
mary and a discussion. The appendices respectively con-
tain (A) the Dirac spinors and their outer-products
u(p, λ1)u(p, λ1

′), . . . in the JW phase convention includ-
ing the CPT discrete symmetry properties of the spinors,
(B) the derivation of the gluon-production density-matrix
elements in the JW phase convention for Figs. 1 and 2, and
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(C) the alternativeΘt, Φt production density-matrix elem-
ents for the alternative beam-reference system defined by
Fig. 3, in which the incident parton “beam” specifies the
positive zb axis.

2 Derivation of gluon-production
beam-referenced
stage-two spin-correlation functions

The general beam-referenced angular distribution in the
(tt̄ )c.m. is

I(ΘB, ΦB; θ
t
1, φ1; θa, φa; θ

t
2, φ2; θb, φb)

=
∑

λ1λ2λ
′
1λ
′
2

ρprod
λ1λ2,λ

′
1λ
′
2

(ΘB, ΦB)

×R
λ1λ

′
1
(t→W+b→ . . . )R

λ2λ
′
2
(t̄→W−b̄→ . . . ),

(26)

where the summations are over the t1 and t̄2 helicities.
The composite decay-density-matrices R

λ1λ
′
1
for t→

W+b→ . . . and R
λ2λ

′
2
for t̄→W−b̄→ . . . are given in

Sect. 2.1 of “I”. This formula holds for any of the above tt̄
production channels and for either the lepton-plus-jets, the
dilepton-plus-jets, or the all-jets tt̄ decay channels.
In the (tt̄ )c.m. frame, see Figs. 1 and 2, the angles

ΘB, ΦB specify the direction of the incident beam, the g1 or
q1 momentum. The t1 momentum is chosen to lie along the
positive zh axis. The positive xh direction is an arbitrary,
fixed perpendicular direction. Because the incident beam is
assumed to be unpolarized, there is no dependence on the
associated φ1 angle after the observable azimuthal angles
are specified (see below). With respect to the normaliza-
tion of the various BR-S2SC functions, the φ1 integration
is not explicitly performed in this paper. With (26) there is
an associated differential counting rate

dN = I(ΘB, ΦB; . . . )d(cosΘB)dΦBd(cos θ
t
1)dφ1

×d(cos θa)dφad(cos θ
t
2)dφ2d(cos θb)dφb, (27)

where, for full phase space, the cosine of each polar angle
ranges from −1 to 1, and each azimuthal angle ranges over
2π.
We use the helicity indices to label the successive terms

in the gluon contributions to the sum in (26). Each term
is denoted Ig

λ1λ2;λ
′
1λ
′
2

with λ1λ2, . . . the signs of the t1,t̄2

helicities. Unlike in “I”, in this paper we do not use super-
scripts “m” and “m2” to emphasize the mixed-helicity and
helicity-flip contributions versus the non-superscripted
helicity-conserving ones, since a quick glance at the pat-
terns in these subscripted helicity indices provides these
distinctions. The charged lepton’s azimuthal angle φa or
φb is always referenced by the oppositeW

∓-boson momen-
tum, so these charged-lepton azimuthal angles are denoted

without “tilded accents”. For the alternative˜φa and ˜φb ref-
erencing by the opposite t̄2, t1 momentum directions, see
the discussion in 2nd and 3rd paragraphs of Sect. 2 of “I”.

2.1 Gluon-production density matrix in Jacob and
Wick phase convention

The t1t2 helicity-conserving gluon-production density-
matrix elements in the (tt)c.m. system are

ρg+−,+− = ρ
g
−+,−+ = c(s,ΘB)

4p2

s
sin2ΘB(1+cos

2ΘB),

(28)

ρg−+,+− = {ρ
g
+−,−+}

∗ = c(s,ΘB)
4p2

s
ei2ΦB sin4ΘB,

(29)

where the asterisk denotes complex-conjugation, and the
common pole factor c(E,ΘB) is given in (6) in the intro-
duction. Note the ei2ΦB factor in (29).
The mixed helicity-properties gluon-production densi-

ty-matrix elements are

ρg−+,++ = ρ
g
−+,−− =−ρ

g
−−,+− =−ρ

g
++,+− = (30)

{ρg++,−+}
∗= {ρg−−,−+}

∗ =−{ρg+−,−−}
∗=−{ρg+−,++}

∗

(31)

=−c(s,ΘB)
8p2m

s3/2
eiΦB sin3ΘB cosΘB,

(32)

with an overall minus sign and eiΦB factor.
The helicity-flip gluon-production density-matrix-

elements are

ρg++,++ = ρ
g
−−,−−

= c(s,ΘB)
4m2

s
(1+

4p2

s
[1+sin4ΘB]),

(33)

ρg++,−− = ρ
g
−−,++

= c(s,ΘB)
4m2

s
(1−

4p2

s
[1+sin4ΘB]).

(34)

2.2 Gluon contributions to BR-S2SC function

The helicity-conserving contribution is

Ig+−,+− =
4p2

s
c(s,ΘB) R++R−− sin

2ΘB(1+cos
2ΘB),

(35)

Ig−+,−+ =
4p2

s
c(s,ΘB) R−−R++ sin

2ΘB(1+cos
2ΘB),

(36)

Ig+−,−+ =
4p2

s
c(s,ΘB) e

−i(2ΦR+φ) r+−r−+ sin
4ΘB,

(37)

Ig−+,+− =
4p2

s
c(s,ΘB) e

i(2ΦR+φ) r−+r+− sin
4ΘB, (38)
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where R++, R−−, R++, R−−, are the diagonal elements,
and (r−+)

∗ = r+− = Fa+iHa, (r−+)
∗ = r+− =−Fb− iHb

the off-diagonal elements of the sequential-decay dens-
ity matrices R

λ1λ
′
1
(t→W+b→ (l+ν)b) and R

λ2λ
′
2
(t̄→

W−b̄→ (l−ν̄)b̄). As in Sect. 2.2.1 of “I”, in the Igλ1λ2,λ1′λ1′
and Iqλ1λ2,λ1′λ1′ contributions in this paper, the starting
angles φ2 andΦB have been replaced by the angles φ= φ1+
φ2 and ΦR = ΦB−φ1.
The first part of the mixed helicity-properties contribu-

tion is

Ig++,+− =−
8p2m

s3/2
c(s,ΘB) R++(Fb+iHb) sin

3ΘB

× cosΘBe
i(ΦR+φ), (39)

Ig−−,−+ =
8p2m

s3/2
c(s,ΘB) R−−(Fb− iHb) sin

3ΘB

× cosΘBe
−i(ΦR+φ), (40)

Ig++,−+ =−
8p2m

s3/2
c(s,ΘB) (Fa+iHa)R++ sin

3ΘB

× cosΘBe
−iΦR , (41)

Ig−−,+− =
8p2m

s3/2
c(s,ΘB) (Fa− iHa)R−− sin

3ΘB

× cosΘBe
iΦR . (42)

The second part of the mixed helicity-properties contri-
bution is

Ig+−,++ =−
8p2m

s3/2
c(s,ΘB) R++(Fb− iHb) sin

3ΘB

× cosΘBe
−i(ΦR+φ), (43)

Ig−+,−− =
8p2m

s3/2
c(s,ΘB) R−−(Fb+iHb) sin

3ΘB

× cosΘBe
i(ΦR+φ), (44)

Ig+−,−− =
8p2m

s3/2
c(s,ΘB) (Fa+iHa)R−− sin

3ΘB

× cosΘBe
−iΦR , (45)

Ig−+,++ =−
8p2m

s3/2
c(s,ΘB) (Fa− iHa)R++ sin

3ΘB

× cosΘBe
iΦR . (46)

The helicity-flip contribution is

Ig++,++ =
4m2

s
c(s,ΘB) R++R++

[

1+
4p2

s
(1+sin4ΘB)

]

,

(47)

Ig−−,−− =
4m2

s
c(s,ΘB) R−−R−−

[

1+
4p2

s
(1+sin4ΘB)

]

,

(48)

Ig++,−− =
4m2

s
c(s,ΘB) e

iφr+−r+−

×

[

1−
4p2

s
(1+sin4ΘB)

]

, (49)

Ig−−,++ =
4m2

s
c(s,ΘB) e

−iφr−+r−+

×

[

1−
4p2

s
(1+sin4ΘB)

]

. (50)

2.3 Lepton-plus-jets channel: λb =−1/2, λb̄ =+1/2
dominance

From the perspective of specific tt̄ decay channels and/or
specific helicity amplitude tests, one can use the above
results to investigate various BR-S2SC functions. For in-
stance, in this paper, we are most interested in the “lepton-
plus-jets channel” and in tests for the relative sign of or for
measurement of a possible non-trivial phase between the
λb = −1/2 helicity amplitudes for t→W+b. We assume
that the λb =−1/2 and λb = 1/2 contributions dominate.

2.3.1 t1→W
+
1 b→ (l

+ν)b

For the case t1→W
+
1 b→ (l

+ν)b, with W−2 decaying into
hadronic jets, we separate the intensity contributions into
two parts: “signal terms” ˜I|sig which depend on ΓR(0,−1)

and ΓI(0,−1), and “background terms” ˜I|0 which depend
on Γ (0, 0) and Γ (−1,−1). In this section, we use a tilde
accent on ˜I|0, . . . to denote the integration over the θb,
φb variables. By (95)–(97) of “I”, this integration directly
projects out the various Γ (λW , λW

′) dependencies.
We find for the helicity-conserving contribution

(˜Ig+−,+−+
˜Ig−+,−+)|0

=
8πp2

3s
c(s,ΘB) sin

2ΘB(1+cos
2ΘB) (51)

×

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1
2Γ (0, 0) sin

2 θa[Γ (0, 0)(1+cosθ
t
1 cos θ

t
2)

+Γ (1, 1)(1− cosθt1 cos θ
t
2)]

+Γ (−1,−1) sin4 θa2 [Γ (0, 0)(1− cosθ
t
1 cos θ

t
2)

+Γ (1, 1)(1+cosθt1 cos θ
t
2)]

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

,

(˜Ig+−,+−+
˜Ig−+,−+)|sig

=
8
√
2πp2

3s
c(s,ΘB) sin

2ΘB(1+cos
2ΘB)

× sin θt1 cos θ
t
2 sin θa sin

2 θa

2
×{−ΓR(0,−1) cosφa+ΓI(0,−1) sinφa}

× [Γ (0, 0)−Γ (1, 1)], (52)

(˜Ig+−,−++
˜Ig−+,+−)|0

=−
8πp2

3s
c(s,ΘB) sin

4ΘB cos(2ΦR+φ) sin θ
t
1 sin θ

t
2

×

{

1

2
Γ (0, 0) sin2 θa−Γ (−1,−1) sin

4 θa

2

}

× [Γ (0, 0)−Γ (1, 1)], (53)
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(˜Ig+−,−++
˜Ig−+,+−)|sig

=−
8
√
2πp2

3s
c(s,ΘB) sin

4ΘB sin θ
t
2 sin θa sin

2 θa

2
(54)

×

⎧

⎪

⎪

⎨

⎪

⎪

⎩

cos(2ΦR+φ)
cos θt1 {ΓR(0,−1) cosφa−ΓI(0,−1) sinφa}

+sin(2ΦR+φ)
{ΓR(0,−1) sinφa+ΓI(0,−1) cosφa}

⎫

⎪

⎪

⎬

⎪

⎪

⎭

× [Γ (0, 0)−Γ(1, 1)].

We collect the mixed-helicity contributions in real sums:

(˜Ig−+,+++
˜Ig−−,+−+

˜Ig+−,−−+
˜Ig++,−+)|0

=
32πp2m

3s3/2
c(s,ΘB) sin

3ΘB cosΘB (55)

cosΦR sin θ
t
1 cos θ

t
2

×

{

1

2
Γ (0, 0) sin2 θa−Γ (−1,−1) sin

4 θa

2

}

× [Γ (0, 0)−Γ (1, 1)],

(˜Ig−+,+++ ˜I
g
−−,+−+ ˜I

g
+−,−−+ ˜I

g
++,−+)|sig

=
32
√
2πp2m

3s3/2
c(s,ΘB) sin

3ΘB cosΘB (56)

× cos θt2 sin θa sin
2 θa

2

×

{

cos θt1 {ΓR(0,−1) cosφa−ΓI(0,−1) sinφa} cosΦR
+ {ΓR(0,−1) sinφa+ΓI(0,−1) cosφa} sinΦR

}

× [Γ (0, 0)−Γ (1, 1)],

(˜Ig++,+−+ ˜I
g
−−,−++ ˜I

g
+−,+++ ˜I

g
−+,−−)|0

=−
32πp2m

3s3/2
c(s,ΘB) sin

3ΘB cosΘB (57)

× cos(ΦR+φ) cos θ
t
1 sin θ

t
2

×

{

1

2
Γ (0, 0) sin2 θa−Γ (−1,−1) sin

4 θa

2

}

× [Γ (0, 0)−Γ (1, 1)],

(˜Ig++,+−+
˜Ig−−,−++

˜Ig+−,+++
˜Ig−+,−−)|sig

=
32
√
2πp2m

3s3/2
c(s,ΘB) sin

3ΘB cosΘB (58)

× cos(ΦR+φ) sin θ
t
1 sin θ

t
2 sin θa sin

2 θa

2
×{ΓR(0,−1) cosφa−ΓI(0,−1) sinφa}

× [Γ (0, 0)−Γ (1, 1)].

The helicity-flip contributions are

(˜Ig++,+++
˜Ig−−,−−)|0

=
8πm2

3s
c(s,ΘB)

[

1+
4p2

s
(1+sin4ΘB)

]

(59)

×

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1
2Γ (0, 0) sin

2 θa[Γ (0, 0)(1− cosθt1 cos θ
t
2)

+Γ (1, 1)(1+cosθt1 cos θ
t
2)]

+Γ (−1,−1) sin4 θa2 [Γ (0, 0)(1+cosθ
t
1 cos θ

t
2)

+Γ (1, 1)(1− cosθt1 cos θ
t
2)]

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

,

(˜Ig++,+++ ˜I
g
−−,−−)|sig

=
8
√
2πm2

3s
c(s,ΘB)

[

1+
4p2

s
(1+sin4ΘB)

]

(60)

× sin θt1 cos θ
t
2 sin θa sin

2 θa

2
×{ΓR(0,−1) cosφa−ΓI(0,−1) sinφa}

× [Γ (0, 0)−Γ (1, 1)],

(˜Ig++,−−+
˜Ig−−,++)|0

=
8πm2

3s
c(s,ΘB)

[

1−
4p2

s
(1+sin4ΘB)

]

(61)

× cosφ sin θt1 sin θ
t
2

×

{

−
1

2
Γ (0, 0) sin2 θa+Γ (−1,−1) sin

4 θa

2

}

× [Γ (0, 0)−Γ (1, 1)],

(˜Ig++,−−+
˜Ig−−,++)|sig

=
8
√
2πm2

3s
c(s,ΘB)

[

1−
4p2

s
(1+sin4ΘB)

]

sin θt2 sin θa

× sin2
θa

2

×

{

cosφ cos θt1 {−ΓR(0,−1) cosφa+ΓI(0,−1) sinφa}

+sinφ {ΓR(0,−1) sinφa+ΓI(0,−1) cosφa}

}

× [Γ (0, 0)−Γ (1, 1)]. (62)

2.4 t2→W
−
2 b→ (l

−ν̄)b

For the CP -conjugate process t2→W
−
2 b→ (l

−ν̄)b, with
W+1 decaying into hadronic jets, we similarly separate the

contributions: “signal terms” ˜I|sig depending on ΓR(0, 1)

and Γ I(0, 1), and “background terms”
˜I|0 depending on

Γ (0, 0) and Γ (1, 1).
By integration over θa, φa, we find for the helicity-

conserving contribution

(˜I
g

+−,+−+
˜I
g

−+,−+)|0

=
8πp2

3s
c(s,ΘB) sin

2ΘB(1+cos
2ΘB) (63)

×

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1
2Γ (0, 0) sin

2 θb[Γ (0, 0)(1+cosθ
t
1 cos θ

t
2)

+Γ (−1,−1)(1− cosθt1 cos θ
t
2)]

+Γ (1, 1) sin4 θb2 [Γ (0, 0)(1− cosθ
t
1 cos θ

t
2)

+Γ (−1,−1)(1+cosθt1 cos θ
t
2)]

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

,

(˜I
g

+−,+−+
˜I
g

−+,−+)|sig
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=−
8
√
2πp2

3s
c(s,ΘB) sin

2ΘB(1+cos
2ΘB) cos θ

t
1 sin θ

t
2

× sin θb sin
2 θb

2

{

ΓR(0, 1) cosφb+Γ I(0, 1) sinφb
}

× [Γ (0, 0)−Γ (−1,−1)], (64)

(˜I
g

+−,−++
˜I
g

−+,+−)|0

=−
8πp2

3s
c(s,ΘB) sin

4ΘB cos(2ΦR+φ) sin θ
t
1 sin θ

t
2

×

{

1

2
Γ (0, 0) sin2 θb−Γ (1, 1) sin

4 θb

2

}

× [Γ (0, 0)−Γ (−1,−1)], (65)

(˜I
g

+−,−++
˜I
g

−+,+−)|sig

=−
8
√
2πp2

3s
c(s,ΘB) sin

4ΘB sin θ
t
1 sin θb sin

2 θb

2

×

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

cos(2ΦR+φ) cos θ
t
2

×
{

ΓR(0, 1) cosφb+Γ I(0, 1) sinφb
}

− sin(2ΦR+φ)

×
{

ΓR(0, 1) sinφb−Γ I(0, 1) cosφb
}

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

× [Γ (0, 0)−Γ (−1,−1)]. (66)

The mixed-helicity contributions are

(˜I
g

−+,+++
˜I
g

−−,+−+
˜I
g

+−,−−+
˜I
g

++,−+)|0

=
32πp2m

3s3/2
c(E,ΘB) sin

3ΘB cosΘB (67)

× cosΦR sin θ
t
1 cos θ

t
2

×

{

1

2
Γ (0, 0) sin2 θb−Γ (1, 1) sin

4 θb

2

}

× [Γ (0, 0)−Γ (−1,−1)],

(˜I
g

−+,+++
˜I
g

−−,+−+
˜I
g

+−,−−+
˜I
g

++,−+)|sig

=−
32
√
2πp2m

3s3/2
c(s,ΘB) sin

3ΘB cosΘB (68)

× cosΦR sin θ
t
1 sin θ

t
2 sin θb sin

2 θb

2
×
{

ΓR(0, 1) cosφb+Γ I(0, 1) sinφb
}

× [Γ (0, 0)−Γ (−1,−1)],

(˜I
g

++,+−+
˜I
g

−−,−++
˜I
g

+−,+++
˜I
g

−+,−−)|0

=−
32πp2m

3s3/2
c(s,ΘB) sin

3ΘB cosΘB (69)

× cos(ΦR+φ) cos θ
t
1 sin θ

t
2

×

{

1

2
Γ (0, 0) sin2 θb−Γ (1, 1) sin

4 θb

2

}

× [Γ (0, 0)−Γ (−1,−1)],

(˜I
g

++,+−+
˜I
g

−−,−++
˜I
g

+−,+++
˜I
g

−+,−−)|sig

=−
32
√
2πp2m

3s3/2
c(s,ΘB) sin

3ΘB cosΘB cos θ
t
1 (70)

× sin θb sin
2 θb

2

×

⎧

⎪

⎪

⎨

⎪

⎪

⎩

cos θt2
{

ΓR(0, 1) cosφb+Γ I(0, 1) sinφb
}

× cos(ΦR+φ)
+
{

−ΓR(0, 1) sinφb+Γ I(0, 1) cosφb
}

× sin(ΦR+φ)

⎫

⎪

⎪

⎬

⎪

⎪

⎭

× [Γ (0, 0)−Γ (−1,−1)].

The helicity-flip contributions are

(˜I
g

++,+++
˜I
g

−−,−−)|0

=
8πm2

3s
c(s,ΘB)

[

1+
4p2

s
(1+sin4ΘB)

]

(71)

×

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1
2Γ (0, 0) sin

2 θb[Γ (0, 0)(1− cosθt1 cos θ
t
2)

+Γ (−1,−1)(1+cosθt1 cos θ
t
2)]

+Γ (1, 1) sin4 θb2 [Γ (0, 0)(1+cosθ
t
1 cos θ

t
2)

+Γ (−1,−1)(1− cosθt1 cos θ
t
2)]

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

,

(˜I
g

++,+++
˜I
g

−−,−−)|sig

=
8
√
2πm2

3s
c(s,ΘB)

[

1+
4p2

s
(1+sin4ΘB)

]

(72)

× cos θt1 sin θ
t
2 sin θb sin

2 θb

2
×
{

ΓR(0, 1) cosφb+Γ I(0, 1) sinφb
}

× [Γ (0, 0)−Γ (−1,−1)],

(˜I
g

++,−−+
˜I
g

−−,++)|0

=
8πm2

3s
c(s,ΘB)

[

1−
4p2

s
(1+sin4ΘB)

]

(73)

× cosφ sin θt1 sin θ
t
2

×

{

−
1

2
Γ (0, 0) sin2 θb+Γ (1, 1) sin

4 θb

2

}

× [Γ (0, 0)−Γ (−1,−1)],

(˜I
g

++,−−+
˜I
g

−−,++)|sig

=−
8
√
2πm2

3s
c(s,ΘB)

[

1−
4p2

s
(1+sin4ΘB)

]

sin θt1 sin θb

× sin2
θb

2

×

{

cosφ cos θt2
{

ΓR(0, 1) cosφb+Γ I(0, 1) sinφb
}

− sinφ
{

ΓR(0, 1) sinφb−Γ I(0, 1) cosφb
}

}

× [Γ (0, 0)−Γ (−1,−1)]. (74)

2.5 Γ(λW, λW�) tests versus angular dependence

In summary, with beam-referencing, for the t1→W
+
1 b→

(l+ν)b case there are six “background terms” depending on
Γ (0, 0) and Γ (−1,−1), and also six “signal terms” depend-
ing on ΓR,I(0,−1). As a consequence of Lorentz invariance,
there are associated kinematic factors with simple angular
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dependence which can be used to isolate andmeasure these
four Γ ’s. The following patterns, (i) and (ii), for these BR-

S2SC contributions ˜Ig,q
λ1λ2;λ

′
1λ
′
2

occur identically in gluon

production and in quark production:
(i) θa polar-angle dependence:

The coefficients of Γ (0, 0)
/

Γ (−1,−1)
/

ΓR,I(0,−1)

vary relatively as theW -decay d1mm′(θa)-squared-intensity
ratios

1

2
sin2 θa

/

[

sin4
θa

2

]

/

{

1
√
2
sin θa sin

2 θa

2

}

= 2(1+cosθa)
/

[1− cosθa]
/{

√

2(1+cosθa)(1− cos θa) =
√
2 sin θa

}

. (75)

(ii) φa azimuthal-angle dependence in the “signal
terms”:
The coefficients of ΓR(0,−1)

/

ΓI(0,−1) vary as

cosφa
/

sinφa (76)

in each of the signal terms, i.e. as in the four-angle
gluon-signal term (3) there is a factor {ΓR(0,−1) cosφa
−ΓI(0,−1) sinφa}. However, in three terms there are
also ΓR,I(0,−1)’s with the opposite association of these
cosφa, sinφa factors, i.e. in a factor {ΓR(0,−1) sinφa
+ΓI(0,−1) cosφa}. This opposite association occurs in
half the “signal” contributions: the helicity-conserving one
(˜Ig+−,−++ ˜I

g
−+,+−)|sig of (54), the mixed-helicity (˜I

g
−+,++

+ ˜Ig−−,+−+
˜Ig+−,−−+

˜Ig++,−+)|sig of (56), and in the helici-

ty-flip (˜Ig++,−−+
˜Ig−−,++)|sig of (62), along with a different

ΦR and/or φ dependence. This different angular depen-
dence might be used in an empirical separation of these
terms from the terms with the normal φa association. This
different ΦR and/or φ dependence is the reason that only
the {ΓR(0,−1) cosφa−ΓI(0,−1) sinφa} factor appears in
the signal terms in the four-angle and five-angle BR-S2SC
functions.
There are analogous CP -conjugate patterns in θb and

φb for the CP -conjugate case t̄2→W
−
2 b̄→ (l

−ν̄)b̄. There
is only the factor

{

ΓR(0, 1) cosφb+Γ I(0, 1) sinφb
}

in the
four-angle and five-angle BR-S2SC functions. In the CP -
conjugate case the patterns are also identical in gluon-
production and in quark production.

2.5.1 Six-angle ˜Hgi distributions: φ dependence

To reduce the number of angles to obtain six-angle BR-
S2SC functions, we integrate out either the beam-
referencing azimuthal angle ΦR or the angle φ between the
t1 and t̄2 decay planes . We only list the non-vanishing con-
tributions. To clearly label the successive contributions, we
again use the index i= (λ1λ2, λ

′
1λ
′
2).

We first consider the t−→W+b−→ l+νb channel with
theW− decaying hadronically. For

˜Hgi ≡

∫ 2π

0

dΦR˜I
g
i (77)

the non-vanishing six-angle contributions are proportional
to the “background and signal parts” of the above expres-
sions with

˜Hgi = 2π
˜Igi . (78)

For the helicity-conserving one, i= (+−,+−)+ (−+,−+)
with no φ dependence. For the helicity-flip i= (++,++)+
(−−,−−) with no φ dependence; and i = (++,−−)+
(−−,++)with a cosφ dependence in the background part,
and both cosφ and sinφ dependence in the signal part. The
mixed-helicity contributions vanish.

2.5.2 Six-angle ( ˜Hgi )
′
distributions: ΦR dependence

If instead the φ dependence is integrated out

( ˜Hgi )
′
≡

∫ 2π

0

dφ˜Igi , (79)

the non-vanishing six-angle contributions are also propor-
tional to the above expressions:

( ˜Hgi )
′
= 2π˜Igi . (80)

For the helicity-conserving one, i= (+−,+−)+ (−+,−+)
with no ΦR dependence. For the mixed-helicity, i =
(−+,++)+ (−−,+−) + (+−,−−) + (++,−+) with a
cosΦR dependence in the background part, and both
cosΦR and sinΦR dependence in the signal part. For
the helicity-flip i = (++,++)+(−−,−−) with no ΦR
dependence.

2.5.3 Five-angle ˜Ggi distributions

If both the ΦR and φ dependence are integrated out, the
five-angle distribution {ΘB,θt1, θ

t
2, θa, φa} is

˜Ggi ≡

∫ 2π

0

dφ

∫ 2π

0

dΦR˜I
g
i . (81)

The terms in these expressions only arise from the helicity-
conserving (51) and (52), and from the helicity-flip (59)
and (60):

˜Gg|0 = 4π
2[(˜Ig+−,+−

+ ˜Ig−+,−+)|0+(˜I
g
++,+++

˜Ig−−,−−)|0], (82)

˜Gg|sig = 4π
2[(˜Ig+−,+−+

˜Ig−+,−+)|sig

+(˜Ig++,+++
˜Ig−−,−−)|sig]. (83)

We obtain

˜Gg|0 =
8π3

3
c(s,ΘB)

×

{

1

2
Γ (0, 0) sin2 θa+Γ (−1,−1) sin

4 θa

2

}

× [Γ (0, 0)+Γ (1, 1)]

×
{

g̃g1(s,ΘB)+R g̃
g
2(s,ΘB) cos θ

t
1 cos θ

t
2

}

,

(84)
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˜Gg|sig =−
8
√
2π3

3
c(s,ΘB) sin θa sin

2 θa

2

×{ΓR(0,−1) cosφa−ΓI(0,−1) sinφa}

× [Γ (0, 0)+Γ (1, 1)]R g̃g2(s,ΘB) sin θ
t
1 cos θ

t
2,
(85)

where the two gluon-beam-referencing factors g̃g1,2(s,ΘB)
are listed in (4) and (5).
Note that versus the four-angle distributions listed in

the introduction, in this five-angle distribution ˜Gg the
gluon-beam-referencing factor g̃g2(s,ΘB) appears in both
the background and the signal contributions. For the
quark-production contribution to the five-angle distribu-

tion ˜Gq of (111) and (112), the analogous situation occurs
in the quark-beam-referencing factors g̃q1,2(s,ΘB) versus
the four-angle distribution (9) and (10). Likewise for the
respective CP -conjugate spin-correlation functions.

2.5.4 Four-angle Ggi distributions

If the cos θt1 dependence is integrated out, there is a four-
angle distribution in {ΘB, θt2, θa, φa} with the same “i”
values as in (82) and (83),

Ggi ≡

∫ 1

−1
d(cos θt1)

∫ 2π

0

dφ

∫ 2π

0

dΦR˜I
g
i (86)

=

∫ 1

−1
d(cos θt1)˜G

g
i

which is listed in the introduction section in (2) and (3).

2.5.5 Integrated BR-S2SC distributions
for CP -conjugate cases

For the CP -conjugate case in terms of {ΦR, φ,ΘB, θt2, θ
t
1,

θb, φb}, the successively fewer-angle distributions similarly
follow. The non-vanishing terms are proportional to the
preceding “background and signal” expressions (63)–(74).
The six-angle expression is

˜H
g

i ≡

∫ 2π

0

dΦR
˜I
g

i=2π
˜I
g

i . (87)

For the helicity-conserving one, i= (+−,+−)+ (−+,−+)
with no φ dependence. For the helicity-flip, i= (++,++)+
(−−,−−) with no φ dependence; and i = (++,−−)+
(−−,++) with a cosφ dependence in the background part,
and both cosφ and sinφ dependence in the signal part.
If instead the φ dependence is integrated out, there is

the six-angle expression

(
˜H
g

i )
′
≡

∫ 2π

0

dφ˜I
g

i=2π
˜I
g

i (88)

For the helicity-conserving one, i= (+−,+−)+ (−+,−+)
with no ΦR dependence. For the mixed-helicity, i =
(−+,++) + (−−,+−) + (+−,−−) + (++,−+) with
a cosΦR dependence in the background part, and both

cosΦR and sinΦR dependence in the signal part. For
the helicity-flip, i = (++,++)+ (−−,−−) with no ΦR
dependence.
If both the ΦR and φ dependence are integrated out, the

five-angle distribution {ΘB,θt1, θ
t
2, θb, φb} is

˜G
g

i ≡

∫ 2π

0

dφ

∫ 2π

0

dΦR
˜I
g

i , (89)

and the terms in these expressions only arise from the
helicity-conserving (63) and (64), and from the helicity-flip
(71) and (72):

˜G
g

i |0 = 4π
2[(˜I

g

+−,+−

+˜I
g

−+,−+)|0+(
˜I
g

++,+++
˜I
g

−−,−−)|0], (90)

˜G
g

i |sig = 4π
2[(˜I

g

+−,+−+
˜I
g

−+,−+)|sig

+(˜I
g

++,+++
˜I
g

−−,−−)|sig]. (91)

We obtain

˜G
g
|0 =

8π3

3
c(s,ΘB)

{

1

2
Γ (0, 0) sin2 θb+Γ (1, 1) sin

4 θb

2

}

× [Γ (0, 0)+Γ (−1,−1)]

×
{

g̃g1(s,ΘB)+R g̃
g
2(s,ΘB) cos θ

t
1 cos θ

t
2

}

, (92)

˜G
g
|sig =−

8
√
2π3

3
c(s,ΘB) sin θb sin

2 θb

2

×
{

ΓR(0, 1) cosφb+Γ I(0, 1) sinφb
}

× [Γ (0, 0)+Γ (−1,−1)]R g̃g2(s,ΘB) cos θ
t
1 sin θ

t
2,

(93)

where g̃g1,2(s,ΘB) are given in (4) and (5).
Finally, if the cos θt2 dependence is integrated out, we

obtain the four-angle distribution in {ΘB,θt1, θb, φb}

G
g

i ≡

∫ 1

−1
d(cos θt2)

∫ 2π

0

dφ

∫ 2π

0

dΦR
˜

I
g

i

=

∫ 1

−1
d(cos θt2)

˜G
g

i , (94)

which is listed in the introduction section in (21) and (22).

3 Derivation of quark-production
beam-referenced
stage-two spin-correlation functions

Unlike the treatment of the quark-production contribution
in “I”, we do not integrate out the cosΘB dependence in
this paper, as was discussed in the introduction.
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3.1 Quark-production density matrix
in JW phase convention

For comparison with the analogous gluon-density-matrix
elements listed in the previous section, including the
color factor, the t1t2 helicity-conserving quark-production
density-matrix elements in the (tt)c.m. system are

ρq+−,+− = ρ
q
−+,−+ =

g4

9
(1+cos2ΘB), (95)

ρq−+,+− = {ρ
q
+−,−+}

∗ =
g4

9
ei2ΦB sin2ΘB, (96)

with an ei2ΦB factor in (96). These and the following
density-matrix elements agree with (56) of “I”. For
q1(k)q2(n)−→ t1(p)t2(l), s= (k+n)2 = (p+ l)2 = 4E2, t=
(p−k)2 = (n− l)2 =m2−2E2(1−β cosΘB), u= (p−n)2

= (k− l)2 =m2−2E2(1+β cosΘB) where β = p/E. The
mixed-helicity properties quark-production density-mat-
rix elements are

ρq−+,++ = ρ
q
−+,−− =−ρ

q
−−,+− =−ρ

q
++,+−

= {ρq++,−+}
∗ = {ρq−−,−+}

∗ =−{ρq+−,−−}
∗

(97)

=−{ρq+−,++}
∗ =−

2mg4

9s1/2
eiΦB sinΘB cosΘB,

with an overall minus sign and eiΦB factor. The helicity-flip
quark-production density-matrix elements are

ρq++,++ = ρ
q
−−,−− = ρ

q
++,−− = ρ

q
−−,++ =

4m2g4

9s
sin2ΘB.

(98)

These give the quark contributions to the BR-S2SC
functions listed in Sect. 2 of “I”, when each expression in
“I” is multiplied by the color factor 19 .

3.2 Lepton-plus-jets channel: λb =−1/2, λb̄ =+1/2
dominance

3.2.1 t1→W
+
1 b→ (l

+ν)b

With the i = (λ1λ2, λ
′

1λ
′

2) labelling of the present paper,
the quark contributions are proportional to the ones in
(98)–(109) of “I” as follows.
For the helicity-conserving contribution,

(˜Iq+−,+−+ ˜I
q
−+,−+)|0 =

1

9
(˜I+++ ˜I−−)|0, (99)

(˜Iq+−,+−+
˜Iq−+,−+)|sig =

1

9
(˜I+++ ˜I−−)|sig, (100)

(˜Iq+−,−++
˜Iq−+,+−)|0 =

1

9
(˜I+−+ ˜I−+)|0, (101)

(˜Iq+−,−++ ˜I
q
−+,+−)|sig =

1

9
(˜I+−+ ˜I−+)|sig. (102)

For the mixed-helicity contribution,

(˜Iq−+,+++
˜Iq−−,+−+

˜Iq+−,−−+
˜Iq++,−+)|0

=
1

9
˜Im(ω

++η−)|0, (103)

(˜Iq−+,+++
˜Iq−−,+−+

˜Iq+−,−−+
˜Iq++,−+)|sig

=
1

9
˜Im(ω

++η−)|sig, (104)

(˜Iq++,+−+
˜Iq−−,−++

˜Iq+−,+++
˜Iq−+,−−)|0

=
1

9
˜Im(ω

−+η+)|0, (105)

(˜Iq++,+−+
˜Iq−−,−++

˜Iq+−,+++
˜Iq−+,−−)|sig

=
1

9
˜Im(ω

−+η+)|sig. (106)

The helicity-flip contributions are

(˜Iq++,+++
˜Iq−−,−−)|0 =

1

9
(˜Im2+++ ˜I

m2
−−)|0, (107)

(˜Iq++,+++ ˜I
q
−−,−−)|sig =

1

9
(˜Im2+++ ˜I

m2
−−)|sig, (108)

(˜Iq++,−−+
˜Iq−−,++)|0 =

1

9
(˜Im2+−+

˜Im2−+)|0, (109)

(˜Iq++,−−+
˜Iq−−,++)|sig =

1

9
(˜Im2+−+ ˜I

m2
−+)|sig. (110)

By this i = (λ1λ2, λ
′

1λ
′

2) labelling, the above general
formulas and remarks (77)–(83) for the successively fewer-
angle gluon distributions apply for the quark distributions
by simply changing the superscript g→ q. Thereby, one ob-

tains the six-angle ˜Hqi , (
˜Hqi )

′
, and the five-angle ˜Gqi .

Explicitly, in terms of {ΘB, θt1, θ
t
2, θa, φa}, the five-angle

distribution is

˜Gq|0 =
π3g4

27s2

{

1

2
Γ (0, 0) sin2 θa+Γ (−1,−1) sin

4 θa

2

}

× [Γ (0, 0)+Γ (1, 1)]

×
{

g̃q1(s,ΘB)+R g̃
q
2(s,ΘB) cos θ

t
1 cos θ

t
2

}

,

(111)

˜Gq|sig =−

√
2π3g4

27s2
sin θa sin

2 θa

2

×{ΓR(0,−1) cosφa−ΓI(0,−1) sinφa}

× [Γ (0, 0)+Γ (1, 1)]R g̃q2(s,ΘB) sin θ
t
1 cos θ

t
2,
(112)

where the two quark-beam-referencing factors g̃q1,2(s,ΘB)
are listed in (11) and (12).

The simpler four-angle distribution Gqi =
∫ 1

−1 d(cos θ
t
1)˜G

q
i

is given in the introduction in (9) and (10).
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3.2.2 t2→W
−
2 b→ (l

−ν̄)b

For this CP -conjugate case, the quark contributions are
proportional to (113)–(124) of “I”.
For the helicity-conserving contribution,

(˜I
q

+−,+−+
˜I
q

−+,−+)|0 =
1

9
(˜I+++

˜I−−)|0, (113)

(˜I
q

+−,+−+
˜I
q

−+,−+)|sig =
1

9
(˜I+++

˜I−−)|sig, (114)

(˜I
q

+−,−++
˜I
q

−+,+−)|0 =
1

9
(˜I+−+

˜I−+)|0, (115)

(˜I
q

+−,−++
˜I
q

−+,+−)|sig =
1

9
(˜I+−+

˜I−+)|sig. (116)

For the mixed-helicity contribution,

(˜I
q

−+,+++
˜I
q

−−,+−+
˜I
q

+−,−−+
˜I
q

++,−+)|0

=
1

9
˜I
m(ω++η−)

|0, (117)

(˜I
q

−+,+++
˜I
q

−−,+−+
˜I
q

+−,−−+
˜I
q

++,−+)|sig

=
1

9
˜I
m(ω++η−)

|sig, (118)

(˜I
q

++,+−+
˜I
q

−−,−++
˜I
q

+−,+++
˜I
q

−+,−−)|0

=
1

9
˜I
m(ω−+η+)

|0, (119)

(˜I
q

++,+−+
˜I
q

−−,−++
˜I
q

+−,+++
˜I
q

−+,−−)|sig

=
1

9
˜I
m(ω−+η+)

|sig. (120)

For the helicity-flip contribution,

(˜I
q

++,+++
˜I
q

−−,−−)|0 =
1

9
(˜I
m2

+++
˜I
m2

−−)|0, (121)

(˜I
q

++,+++
˜I
q

−−,−−)|sig =
1

9
(˜I
m2

+++
˜I
m2

−−)|sig, (122)

(˜I
q

++,−−+
˜I
q

−−,++)|0 =
1

9
(˜I
m2

+−+
˜I
m2

−+)|0, (123)

(˜I
q

++,−−+
˜I
q

−−,++)|sig =
1

9
(˜I
m2

+−+
˜I
m2

−+)|sig. (124)

The above general formulas and remarks in (87)–(93)
for the successively fewer-angle gluon distributions apply
for the quark distributions by simply changing the super-

script g→ q. Thereby, one obtains the six-angle ˜H
q

i , (
˜H
q

i )
′
,

and the five-angle
˜G
q

i .

Explicitly, in terms of {ΘB, θt1, θ
t
2, θb, φb}, the five-angle

distribution is

˜G
q

|0 =
π3g4

27s2

{

1

2
Γ (0, 0) sin2 θb+Γ (1, 1) sin

4 θb

2

}

× [Γ (0, 0)+Γ (−1,−1)]

×
{

g̃q1(s,ΘB)+R g̃
q
2(s,ΘB) cos θ

t
1 cos θ

t
2

}

, (125)

˜G
q

|sig =−

√
2π3g4

27s2
sin θb sin

2 θb

2

×
{

ΓR(0, 1) cosφb+Γ I(0, 1) sinφb
}

× [Γ (0, 0)+Γ (−1,−1)] R g̃q2(s,ΘB) cos θ
t
1 sin θ

t
2.

(126)

The simpler four-angle distribution G
q

i =
∫ 1

−1 d(cos θ
t
2)
˜G
q

i

is given in the introduction in (24) and (25).

4 Summary and discussion

From the top-quark beam-referenced spin-correlation func-
tion G(g,q)|0+G(g,q)|sig with both gluon (see (2) and (3))
and quark (see (9) and (10)) production contributions, the
tests for t1→W+b decay are
(i) By measurement of ΓR(0,−1), the relative sign of

the two dominant λb = −1/2 helicity-amplitudes can be
determined if their relative phase is 0◦ or 180◦. Versus the
partial-decay width Γ (t→W+b), W -boson longitudinal–
transverse interference is a large effect because in the stan-
dard model ηL ≡

ΓR(0,−1)
Γ

= ±0.46 without/with a large
tR→ bL chiral weak-transition-moment.
(ii) By measurement of both ΓR(0,−1) and ΓI(0,−1)

via the φa dependence, limits can be set on a possible non-
trivial phase βL ≡ ϕ−1,− 12

−ϕ0,− 12
; see (14)–(16). Non-

trivial relative phases can occur in top-quark decays if ˜TFS
invariance is violated [1, 7]. Such a violation will occur if
either (a) there is a fundamental violation of canonical
time-reversal invariance, and/or (b) there are absorptive
final-state interactions.
Explicit expressions for the A(λW+ , λb) helicity ampli-

tudes in terms of the most general Lorentz coupling

W ∗µJ
µ

b̄t
=W ∗µ ūb (p)Γ

µut (k) ,

where kt = qW +pb, are given in the NKLM paper in [7].
The canonical decomposition of Γµ = ΓµV +Γ

µ
A is

ΓµV = gV γ
µ+

fM

2ΛM
iσµν(k−p)ν+

gS−

2ΛS−
(k−p)µ

+
gS

2ΛS
(k+p)µ+

gT+

2ΛT+
iσµν(k+p)ν ,

ΓµA = gAγ
µγ5+

fE

2ΛE
iσµν(k−p)νγ5+

gP−

2ΛP−
(k−p)µγ5

+
gP

2ΛP
(k+p)µγ5+

g
T+5

2Λ
T+5

iσµν(k+p)νγ5,
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where the parameters Λi are “effective-mass scales of new
physics associated with the ith type additional Lorentz
structure.” For a general treatment of additional Lorentz
structures to pure (V −A), the gi or Λi must be con-
sidered as complex phenomenological parameters. Details,
such as Lorentz-structure-equivalence theorems S ∼ V +
fM , P ∼−A+fE , . . . ; the matrix elements of the diver-
gences of these couplings; and the definitions of the chiral
couplings gL,R = gV ∓ gA, . . . are in the NKLM, NC, NA
papers in [7].
For t̄2 →W−b̄ decay, from the gluon (see (21) and

(22)) and quark (see (24) and (25)) production contribu-
tions to the CP -conjugate BR-S2SC function for Gg,q|0+
Gg,q|sig, there are two analogous tests for t̄2→W2

−b̄ decay.

By measurement of ΓR(0, 1), the relative sign of the two
dominant helicity amplitudes B(0, 1/2) and B(1, 1/2) for
t̄2→W−b̄ can be determined if their relative phase is 0◦ or
180◦ (as in the case of large t̄L→ b̄R chiral weak-transition-
moment). By measurement of both ΓR(0, 1) and Γ I(0, 1)
via the φb dependence, limits can be set on a non-trivial
phase βR ≡ ϕ1, 12

−ϕ0, 12
; see (18)–(20).

In all these BR-S2SC functions for top-quark de-
cay tests, the polarized-partial widths and W -boson-LT-
interference widths (15) and (16) appear multiplied by
the θa, φa angular factors, which are expected in the
helicity-formalism for the decay chain t1→W+b→ (l+ν)b.
The spherical angles θa, φa specify the l

+ momentum
in the W1

+ rest frame when there is first a boost from
the (tt̄ )c.m. frame to the t1 rest frame, and then a sec-
ond boost from the t1 rest frame to the W1

+ rest frame.
So, 12Γ (0, 0) sin

2 θa and Γ (−1,−1) sin
4 θa
2 appear in the

background terms G(g,q)|0; see (2) and (9). Similarly,
ΓR(0,−1) sinθa sin

2 θa
2 cosφa and ΓI(0,−1) sin θa sin

2 θa
2

sinφa appear in the signal terms G(g,q)|sig; see (3) and (10).
The situation is analogous for the θb, φb variables in the
CP -conjugate BR-S2SC functions.
The above summary is for the leading-order in QCD

and the leading-order in electroweak interactions consid-
ered in this paper, assuming that the λb =−1/2 and λb̄ =
1/2 helicity-amplitudes dominate in t→W+b decay. An
important consequence of such a dominance is that the
W -boson longitudinal–transverse-interference effects and
BR-S2SC signatures treated in this paper are both large
versus the non-dominant contributions and versus higher-
order QCD and/or higher-order electroweak contributions.
However, for later measurement, there are the two λb = 1/2
non-dominant amplitudes in t1→W+b decay with their
two moduli and two additional relative phases. For a clear
and simple “visual display” of these measurable phases, see
the “α, β, γ”-relative-phases in Fig. 1 in the next to last ci-
tation in [7]. In this context, next-to-leading-order QCD,
next-to-leading-order electroweak, and also W -boson and
t -quark finite-width corrections require further theoretical
investigation [8]. Other polarimetry techniques such as Λb
polarimetry [9], and excellent understandings of detector
systematics and of reaction-backgrounds will be required
for a complete measurement of the four t→W+b decay
amplitudes and of the four decay-amplitudes for the CP -
conjugate mode.

One learns a number of things from this derivation of
the production density matrices and these associated BR-
S2SC functions. First, the non-trivial overall minus signs
and e±iΦB , e±i2ΦB factors appear in the same patterns
in the gluon and quark production density matrices. This
has the important and empirically useful consequence that
most relative phase effects in these BR-S2SC functions do
not depend upon whether the final t1 t̄2 system has been
produced by gluon or by quark production. Therefore, as
discussed in Sect. 1.1, there is a common final-state in-
terference structure of the four-angle BR-S2SC functions,
and likewise for the other additional-angle generalizations
which are listed in Sects. 2 and 3. This is a common in-
terference structure for W -boson longitudinal–transverse
interference. When the φ dependence is included, there
is also a common interference-structure for t1-quark left–
right helicity interference and for t̄2-antiquark left–right
helicity interference. This left–right spin-1/2 interference
is in the gluon contribution, see (61) and (62), and in the
quark contribution, see (109) and (110) in this paper and in
(108) and (109) in “I”.
Second, for the t→W+b decay mode, one learns that

for a spin-correlation measurement using the “lepton +
jets decay channel” to determine the relative sign of or
to obtain a constraint on a possible non-trivial phase be-
tween the two dominant λb = −1/2 helicity amplitudes
requires use of the (tt̄ )c.m. energy of the hadronically
decaying W -boson, or the kinematically equivalent co-
sine of the polar angle of W∓ emission in the antitop
(top) decay frame. Both this cos θt2 factor and the R =
(probWL)− (probWT) suppression factor appear in all
the four-angle and five-angle signal terms, but not in any
of the background terms. For this application ofW -boson
longitudinal–transverse interference, it is fortunate that
in the standard model the probabilities for the presence
of longitudinal/transverse W -bosons are both large. Be-
cause of this R factor, it is also indeed fortunate that
these probabilities are unequal, P (WL) = Γ (0, 0)/Γ = 0.70
andP (WT) = Γ (−1,−1)/Γ = 0.30, irrespective of whether
there exists a large tR→ bL chiral weak-transitionmoment.
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Appendix A: Spinors and their outer-products
in JW phase convention

In the JW phase-convention, for application to t1(p)t2(l)
pair production with respective helicities λ1 and λ2, the
first particle pµ spinor outer-products u(p, λ1)u(p, λ1

′),
. . . [10–12] are

u(p,±)u(p,±) =
1

2
(�p+m)(1±γ5 �S)

=
1

2
(1±γ5 �S)(�p+m),

u(p,+)u(p,−) =
1

2
eιφ(�p+m)γ5 �C =

1

2
eιφγ5 �C(�p+m),
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u(p,−)u(p,+) =
1

2
e−ιφ(�p+m)γ5 �C

∗

=
1

2
e−ιφγ5 �C

∗(�p+m), (A.1)

with

pµ = (E; p sin θ cosφ, p sin θ sinφ, p cos θ), p2 =m2,

Sµ = (
p

m
;
E

m
p̂), S2 =−1,

Cµ = (0; cos θ cosφ− ι sinφ, cos θ sinφ+ ι cosφ,− sin θ),

C ·C∗=−2, (A.2)

with ι=
√
−1 and where the asterisk denotes complex con-

jugation. The signs of λ1 and λ2 are used in labelling
the spinors. Note that S ·p= 0 and C ·p= C∗ ·p= C ·S =
C∗ ·S = 0. For completeness, if the first particle were an
antiparticle, then

v(p,±)v(p,±) =
1

2
(�p−m)(1±γ5 �S)

=
1

2
(1±γ5 �S)(�p−m),

v(p,+)v(p,−) =
1

2
eιφ(�p−m)γ5 �C

∗ =
1

2
eιφγ5 �C

∗(�p−m),

v(p,−)v(p,+) =
1

2
e−ιφ(�p−m)γ5 �C =

1

2
e−ιφγ5 �C(�p−m).

(A.3)

The second antiparticle lµ spinor outer-products v(l,λ2
′)

v(l, λ2), . . . are

v(l,±)v(l,±) =
1

2
(� l−m)(1±γ5 �R)

=
1

2
(1±γ5 �R)(� l−m),

v(l,+)v(l,−) =
1

2
e−ιφ(� l−m)γ5 �B =

1

2
e−ιφγ5 �B(� l−m),

v(l,−)v(l,+) =
1

2
eιφ(� l−m)γ5 �B

∗ =
1

2
eιφγ5 �B

∗(� l−m),

(A.4)

with

lµ = (E;−l sin θ cosφ,−l sin θ sinφ,−l cos θ), l2 =m2,

Rµ = (
l

m
;−
E

m
l̂), R2 =−1,

Bµ = (0; cos θ cosφ− ι sinφ, cos θ sinφ+ ι cosφ,− sin θ),

B ·B∗ =−2, (A.5)

so R · l = 0 and B · l = B∗ · l = B ·R = B∗ ·R = 0. In the
(t1t2)c.m. system, where the t2(l) is back-to-back with the
t1(p), C · l =C∗ · l = C ·R= C∗ ·R= 0. In this system, Bµ

andCµ are identical but in calculating, it is sometimes use-
ful to keep them distinct. For completeness, if lµ were a

particle then

u(l,±)u(l,±) =
1

2
(� l+m)(1±γ5 �R)

=
1

2
(1±γ5 �R)(� l+m),

u(l,+)u(l,−) =
1

2
e−ιφ(� l+m)γ5 �B =

1

2
e−ιφγ5 �B(� l+m),

u(l,−)u(l,+) =
1

2
eιφ(� l+m)γ5 �B

∗ =
1

2
eιφγ5 �B

∗(� l+m).

(A.6)

These outer-products follow from the following spinors:
u(p, λ)|φ, v(p, λ)|φ, . . . , constructed following the proced-
ure of [12]. The sub-label φ on these spinors denotes the
non-zero value of the third Euler angle in the Wigner
D function; see discussion below. This sub-label is nor-
mally suppressed because it is apparent from the context.
For the first particle pµ,

u(p,+) =
1

√
E+m

(�p+m)

⎡

⎢

⎢

⎣

cos θ2
eiφ sin θ2
0
0

⎤

⎥

⎥

⎦

=
√
E+m

⎡

⎢

⎢

⎣

cos θ2
eiφ sin θ2

p
E+m

[

cos θ2
eiφ sin θ2

]

⎤

⎥

⎥

⎦

,

u(p,−) =
1

√
E+m

(�p+m)

⎡

⎢

⎢

⎣

−e−iφ sin θ2
cos θ2
0
0

⎤

⎥

⎥

⎦

=
√
E+m

⎡

⎢

⎢

⎣

−e−iφ sin θ2
cos θ2

p
E+m

[

e−iφ sin θ2
− cos θ2

]

⎤

⎥

⎥

⎦

,

v(p,+) =−
1

√
E+m

(�p−m)

⎡

⎢

⎢

⎣

0
0
sin θ2

−eiφ cos θ2

⎤

⎥

⎥

⎦

=−
√
E+m

⎡

⎢

⎢

⎣

p
E+m

[

− sin θ2
eiφ cos θ2

]

sin θ2
−eiφ cos θ2

⎤

⎥

⎥

⎦

,

v(p,−) =−
1

√
E+m

(�p−m)

⎡

⎢

⎢

⎣

0
0

e−iφ cos θ2
sin θ2

⎤

⎥

⎥

⎦

=−
√
E+m

⎡

⎢

⎢

⎣

p
E+m

[

e−iφ cos θ2
sin θ2

]

e−iφ cos θ2
sin θ2

⎤

⎥

⎥

⎦

. (A.7)
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For the second particle specified by lµ of (A.5), the spinors
are

u(l,−) =
1

√
E+m

(� l+m)

⎡

⎢

⎢

⎣

cos θ2
eiφ sin θ2
0
0

⎤

⎥

⎥

⎦

=
√
E+m

⎡

⎢

⎢

⎣

cos θ2
eiφ sin θ2

− l
E+m

[

cos θ2
eiφ sin θ2

]

⎤

⎥

⎥

⎦

,

u(l,+) =
1

√
E+m

(� l+m)

⎡

⎢

⎢

⎣

−e−iφ sin θ2
cos θ2
0
0

⎤

⎥

⎥

⎦

=
√
E+m

⎡

⎢

⎢

⎣

−e−iφ sin θ2
cos θ2

l
E+m

[

−e−iφ sin θ2
cos θ2

]

⎤

⎥

⎥

⎦

,

v(l,−) =−
1

√
E+m

(� l−m)

⎡

⎢

⎢

⎣

0
0
sin θ2

−eiφ cos θ2

⎤

⎥

⎥

⎦

=−
√
E+m

⎡

⎢

⎢

⎣

l
E+m

[

sin θ2
−eiφ cos θ2

]

sin θ2
−eiφ cos θ2

⎤

⎥

⎥

⎦

,

v(l,+) =−
1

√
E+m

(� l−m)

⎡

⎢

⎢

⎣

0
0

e−iφ cos θ2
sin θ2

⎤

⎥

⎥

⎦

=−
√
E+m

⎡

⎢

⎢

⎣

− l
E+m

[

e−iφ cos θ2
sin θ2

]

e−iφ cos θ2
sin θ2

⎤

⎥

⎥

⎦

. (A.8)

A useful alternative spinor-construction is to set the
third Euler angle to zero. When needed for clarity, we de-
note this alternate spinor-construction by the sub-label
“0”. The formulas for these u(p, λ)|0 and v(p, λ)|0 spinors
are proportional to those listed above. Explicitly, for pµ,

u(p,±)|0 = e
∓iφ/2 u(p,±)|φ, v(p,±)|0 = e

∓iφ/2 v(p,±)|φ,
(A.9)

and for lµ,

u(l,±)|0 = e
±iφ/2 u(l,±)|φ, v(l,±)|0 = e

±iφ/2 v(l,±)|φ.
(A.10)

Consequently, the e±iφ factors are absent in their asso-
ciated outer-products, so in place of the above outer-
products we have u(p,+)|0 u(p,−)|0 =

1
2 (�p+m)γ5 �C, . . .

Similarly, in place of the spin-one particle εµ(p, λ)|φ polar-
ization vectors in [11],

εµ(p, λ)|0 = e
−iλφ εµ(p, λ)|φ ; λ=±1, 0 (A.11)

The P parity and T time-reversal discrete symmetry
properties for the above spinors do not depend on the
choice of the third Euler angle. With P = γ0 and λ=±

Pu(p, λ) = u(l,−λ),

Pv(p, λ) =−v(l,−λ),

where l = |
−→
l | = p = |−→p |. In these and the following rela-

tions, the p denotes the u(p, λ)|φ spinor which is listed in
(A.7) and the l denotes the u(l, λ)|φ spinor which is listed in
(A.8), etc. The gammamatrices are in theDirac representa-
tion, which is sometimes named the “standard” or “Dirac–
Pauli” [12] representation.With T = iγ2γ5γ0 = γ1γ3,

Tu∗(p,±) =∓u(l,±),

T v∗(p,±) =∓v(l,±),

where l= |
−→
l |= p= |−→p |, and the asterisk denotes complex

conjugation.
The C charge-conjugation discrete symmetry proper-

ties do depend on the choice of the third Euler angle. With
C =iγ2γ0, for the first particle pµ spinors (see (A.7))

v(p,±)|φ = e
±iφiγ2 u∗(p,±)|φ = e

±iφCuT(p,±)|φ,

u(p,±)|φ = e
±iφiγ2 v∗(p,±)|φ,

and for the second particle lµ spinors (see (A.8))

v(l,±)|φ = e
∓iφiγ2 u∗(l,±)|φ = e

∓iφCuT (l,±)|φ,

u(l,±)|φ = e
∓iφiγ2 v∗(l,±)|φ.

The C relations for the u(p,±)|0 and v(p,±)|0 spinors are
obtained by omitting the e±iφ factors in these equations.
In the gluon (quark) production density matrices used

in the text, we follow the u(p, λ)|φ, v(p, λ)|φ choice which
corresponds to the choice made in “I” to use a non-zero
third Euler angle in describing t1t̄2 pair production in the
helicity-formalism. Following the Jacob–Wick papers [5],
this non-zero choice of the third argument in the various
Wigner D functions is more often chosen in the literature
on applications of the helicity-formalism. An important
exception occurs in treating sequential decay chains. For
instance, in “I” for describing the sequential-decay matrix
R
λ1λ

′
1
for t→W+b→ (l+ν)b in “I”, we do set the third Eu-

ler angle equal to zero. For specifying the second-stage axes
orientation for W+→ l+ν versus the first-stage axes from
t→W+b where theW+ momentum is in the D functions,
it is conceptually simpler not to make an unnecessary ad-
ditional rotation about the W+ axis in the first-stage D
functions; see Sect. II of [13]. For t→W+b decay, unlike in
completely orienting a rigid body in classical mechanics, it
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is only necessary to correctly orient the θt1, φ
t
1 direction of

the W+ momentum. This only involves the first two Eu-
ler angles. Unlike for specifying theW+ momentum, in the
case of orienting a rigid body, a third Euler angle rotation
is required, for one must also specify the amount of angu-
lar rotation of the non-cylindrically-symmetric rigid body
about its θt1, φ

t
1 axis.

Obviously, some care is needed to insure that the choice
of spinors corresponds to the choice of third argument used
in the D functions in the helicity-formalism. This occa-
sionally needs emphasis because it is common to use the
u(p, λ)|0 and v(p, λ)|0 type spinors, and also common to
use non-zero third-argument D functions in the helicity-
formalism. If used simultaneously to describe the same
elementary particle reaction, this would be an inconsistent
treatment of relative-phase effects.
For both helicity choices, these spinors were checked by

using them to calculate decay matrix elements and com-
paring their overall signs and θ, φ dependence with those
of the helicity-formalism: Using the spinors for the final
neutrinos/antineutrinos, the first particle pµ spinors were
checked for τ−→ νπ−, τ+→ ν̄π+ and the second particle
lµ spinors were checked for τ−→ π−ν, τ+→ π+ν̄. They
were checked for Zo→ τ−τ+ and Zo→ τ+τ−. The quark-
production density-matrix elements for q1q̄2→ t1t̄2 were
calculated as in Appendix B and agree with (56) of “I”.

Appendix B: Derivation of gluon-production
density-matrix elements in JW
phase convention

For the gluon-production sequence g1g2→t1t2, the density-
matrix elements are

ρg
λ1λ2,λ

′
1λ
′
2

(ΘB, ΦB)

=
1

4

∑

s1,s2

M(s1s2, λ1λ2)M
∗(s1s2, λ

′

1λ
′

2) (B.1)

for the QCDLorentz-invariant amplitudeM to the leading-
order in αs. The initial gluon spin-averaging is over the
massless g1 and g2 helicities s1, s2. The t1 and t2 helicities
in the amplitude are λ1, λ2. In the complex-conjugate am-

plitude, λ
′

1, λ
′

2 are their helicities. For simplicity, the initial
color-averaging, the final color summation, and the asso-
ciated color indices are not displayed explicitly in (B.1).
With the spinor outer-products of AppendixA, from (B.1)
by normal tracing techniques, the expressions given in the
text follow for ρg

λ1λ2,λ
′
1λ
′
2

and analogously for ρq
λ1λ2,λ

′
1λ
′
2

;

compare AppendixA of [14]. Similarly, for the Θt, Φt beam
coordinate system of Fig. 3, the alternative ρ̃g

λ1λ2,λ
′
1λ
′
2

gluon production density-matrix elements of Appendix C
follow. For either beam coordinate system, there are 5
distinct gluon-production density-matrix elements and 5
distinct quark-production density-matrix elements. The
other density-matrix elements follow either by hermiticity

or by the P andC discrete symmetries which are present in
the outer-products and in the QCD Feynman-rules.

Appendix C: Θt , Φt production
density-matrix elements in JW
phase convention

As shown in Fig. 3, the alternative Θt, Φt beam-referenced
production density-matrices ρ̃

λ1λ2;λ
′
1λ
′
2
are for a beam co-

ordinate system (xb, yb, zb) in the (tt̄ )c.m. frame in which
the g1 gluon-momentum or q1 quark-momentum “beam”
direction defines the positive zb axis. The final t1 momen-
tum is specified by the spherical angles Θt, Φt. In this ap-
pendix, we denote these alternative density-matrix elem-
ents by a “tilde”.
We do not use these alternative density-matrix elem-

ents in the derivation of the BR-S2SC’s because the azi-
muthal angle Φt is specified versus the initial-beam di-
rection, whereas in ρ

λ1λ2;λ
′
1λ
′
2
derived in Appendix B and

used in the text, the azimuthal angle ΦB is defined versus
the final t1 momentum direction in the (tt̄ )c.m.. In using
the helicity-formalism for BR-S2SC functions for two-body
pair production such as t1t̄2, the final t1 momentum direc-
tion is the natural/most-convenient axis [14] for analyzing
the two sequential-decay-chain-processes and, therefore,
for simultaneously incorporating the beam-referencing.
In the JW phase convention, the gluon-production

density-matrix elements are

ρ̃g+−,+− = ρ̃
g
−+,−+ = c̃(s,Θt)

4p2

s
sin2Θt(1+cos

2Θt),

(C.1)

ρ̃g−+,+− = {ρ̃
g
+−,−+}

∗ = c̃(s,Θt)
4p2

s
ei2Φt sin4Θt,

(C.2)

ρ̃g−+,++ = ρ̃
g
−+,−− =−ρ̃

g
−−,+− =−ρ̃

g
++,+− (C.3)

= {ρ̃g++,−+}
∗ = {ρ̃g−−,−+}

∗

=−{ρ̃g+−,−−}
∗ =−{ρ̃g+−,++}

∗ (C.4)

= c̃(s,Θt)
8p2m

s3/2
eiΦt sin3Θt cosΘt, (C.5)

ρ̃g++,++ = ρ̃
g
−−,−−

= c̃(s,Θt)
4m2

s

(

1+
4p2

s
[1+sin4Θt]

)

, (C.6)

ρ̃g++,−− = ρ̃
g
−−,++

= c̃(s,Θt)
4m2

s

(

1−
4p2

s
[1+sin4Θt]

)

, (C.7)

where

c̃(s,Θt) =
s2g4

96(m2− t)2(m2−u)2

[

7+
36p2

s
cos2Θt

]

.

(C.8)
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Note that there is not an overall minus sign in (C.5) ver-
sus (32) in the text. These ρ̃

λ1λ2;λ
′
1λ
′
2
were derived using

the u(p,±)|0, . . . spinor outer-products of AppendixA; see
the remarks after (A.2). These gluon-production density-
matrix elements (C.1)–(C.7) agree in magnitude with

1

4

∑

hg1,hg2

(hg1, hg2, λ1, λ2)(hg1, hg2, λ
′

1, λ
′

2)
∗ (C.9)

constructed from (A.2) of reference [15]. The e±i2Φt , e±iΦt

factors are missing in (C.9) and some overall signs differ
between (C.1)–(C.7) and (C.9).
From the derivation of ρ̃g

λ1λ2;λ
′
1λ
′
2

, one obtains a simple

“Substitution Rule” for obtaining these Θt, Φt density-
matrix elements from the ΘB, ΦB ones in the text:

{cosΘB→ cosΘt;

eiΦB → 1;

sinΘB→−e
iΦt sinΘt

in “λ1,λ2 = −,+” and “λ1
′
, λ2

′
= +,−”, with complex-

conjugation of this rule for “−”↔ “+” cases.}
This latter step in the substitution rule, which involves

a minus sign, occurs due to the sine functions which arise
from q ·C, q ·B, . . . factors in the spinor outer-products.
This latter step needs to be performed twice in some of
the helicity-conserving density-matrix elements, and once
in the mixed-helicity density-matrix elements.
The quark-production density-matrix elements are

ρ̃q+−,+− = ρ̃
q
−+,−+ =

g4

9
(1+cos2Θt) (C.10)

ρ̃q−+,+− = {ρ̃
q
+−,−+}

∗ =
g4

9
ei2Φt sin2Θt (C.11)

ρ̃q−+,++ = ρ̃
q
−+,−− =−ρ̃

q
−−,+− =−ρ̃

q
++,+−

= {ρ̃q++,−+}
∗ = {ρ̃q−−,−+}

∗ =−{ρ̃q+−,−−}
∗

=−{ρ̃q+−,++}
∗ =
2mg4

9s1/2
eiΦt sinΘt cosΘt,

(C.12)

ρ̃q++,++ = ρ̃
q
−−,−− = ρ̃

q
++,−− = ρ̃

q
−−,++ =

4m2g4

9s
sin2Θt.

(C.13)

There is not an overall minus sign in (C.12) versus (97)
in the text. The above substitution rule also yields these
ρ̃q
λ1λ2;λ

′
1λ
′
2

density-matrix elements from the ρq
λ1λ2;λ

′
1λ
′
2

ones in the text.
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